Tuesday, 28 November 2017

الانتقال من المتوسط نموذج النظام


متوسط ​​التحرك - ما الهبوط المتحرك المتوسط ​​المتحرك - ما كمثال على ذلك، اعتبر الأمن مع أسعار الإغلاق التالية أكثر من 15 يوما: الأسبوع 1 (5 أيام) 20، 22، 24، 25، 23 الأسبوع 2 (5 أيام) 26، 28، 26، 29، 27 الأسبوع 3 (5 أيام) 28، 30، 27، 29، 28 من المتوقع أن يبلغ متوسط ​​سعر الإغلاق خلال 10 أيام أول 10 أيام كنقطة بيانات أولى. نقطة البيانات التالية سوف تسقط أقرب الأسعار، إضافة السعر في يوم 11 واتخاذ المتوسط، وهلم جرا كما هو مبين أدناه. كما لوحظ سابقا، ماس تأخر العمل السعر الحالي لأنها تستند إلى الأسعار الماضية أطول فترة زمنية ل ما، وزيادة الفارق الزمني. وبالتالي فإن درجة الماجستير لمدة 200 يوم سيكون لها درجة أكبر بكثير من التأخر من ما 20 يوما لأنه يحتوي على أسعار لل 200 يوما الماضية. طول ما لاستخدام يعتمد على أهداف التداول، مع ماس أقصر تستخدم للتداول على المدى القصير والطويلة الأجل أكثر ملاءمة للمستثمرين على المدى الطويل. ويتبع المستثمرون والمتداولون على نطاق واسع ما يعادل 200 يوم، حيث يعتبر الفواصل فوق وتحت هذا المتوسط ​​المتحرك إشارات تجارية مهمة. كما تقوم ماس بإرسال إشارات تجارية مهمة من تلقاء نفسها، أو عند تجاوز متوسطين. ارتفاع ما يشير إلى أن الأمن في اتجاه صاعد. في حين أن انخفاض ما يشير إلى أنه في اتجاه هبوطي. وبالمثل، يتم تأكيد الزخم التصاعدي مع كروس صعودي. والذي يحدث عندما يعبر ما على المدى القصير ما فوق ما على المدى الطويل. يتم تأكيد الزخم الهبوطي مع كروس أوفر الهابط، والذي يحدث عندما يعبر ما على المدى القصير ما أقل من ما على المدى الطويل MA. Introduction إلى أريما: نماذج نونسونالونال أريما (p، d، q) التنبؤ المعادلة: نماذج أريما هي، من الناحية النظرية، معظم النماذج العامة للتنبؤ بسلاسل زمنية يمكن أن تكون 8220stationary8221 حسب الاختلاف (إذا لزم الأمر)، ربما بالتزامن مع التحولات غير الخطية مثل قطع الأشجار أو إنزال (إذا لزم الأمر). المتغير العشوائي الذي هو عبارة عن سلسلة زمنية ثابت إذا كانت خصائصه الإحصائية ثابتة على مر الزمن. سلسلة ثابتة لا يوجد لديه اتجاه، والاختلافات حول المتوسط ​​لها اتساع مستمر، وأنه يتلوى بطريقة متسقة. أي أن أنماطها الزمنية العشوائية القصيرة الأجل تبدو دائما بنفس المعنى الإحصائي. ويعني الشرط الأخير أن علاقاته الذاتية (الارتباطات مع انحرافاته السابقة عن المتوسط) تظل ثابتة على مر الزمن، أو على نحو مكافئ، أن طيف القدرة لا يزال ثابتا على مر الزمن. ويمكن أن ينظر إلى متغير عشوائي لهذا النموذج (كالمعتاد) على أنه مزيج من الإشارة والضوضاء، والإشارة (إذا كانت ظاهرة) يمكن أن تكون نمطا للانعكاس السريع أو البطيء، أو التذبذب الجيبية أو بالتناوب السريع في الإشارة ، ويمكن أن يكون لها أيضا عنصر موسمي. ويمكن النظر إلى نموذج أريما على أنه 8220filter8221 يحاول فصل الإشارة عن الضوضاء، ومن ثم يتم استقراء الإشارة إلى المستقبل للحصول على التنبؤات. ومعادلة التنبؤ أريما لسلسلة زمنية ثابتة هي معادلة خطية (أي الانحدار من نوع) تكون فيها المتنبؤات متخلفة عن المتغير التابع والتخلفات المتراكمة في أخطاء التنبؤ. وهذا هو: القيمة المتوقعة ل Y قيمة ثابتة ومرجحة لقيمة واحدة أو أكثر من القيم الأخيرة Y ومجموع مرجح لقيمة أو أكثر من القيم الأخيرة للأخطاء. إذا كانت المتنبئات تتكون فقط من قيم متخلفة من Y. هو نموذج الانحدار الذاتي النقي (8220self-regressed8221) النموذج، وهو مجرد حالة خاصة من نموذج الانحدار والتي يمكن تركيبها مع برامج الانحدار القياسية. على سبيل المثال، نموذج الانحدار الذاتي الأول (8220AR (1) 8221) ل Y هو نموذج انحدار بسيط يتغير فيه المتغير المستقل فقط بفترة واحدة (لاغ (Y، 1) في ستاتغرافيكس أو YLAG1 في ريجرسيت). إذا كان بعض المتنبؤات متخلفة من الأخطاء، وهو نموذج أريما فإنه ليس نموذج الانحدار الخطي، لأنه لا توجد طريقة لتحديد 8220 فترة قصيرة 8217s error8221 كمتغير مستقل: يجب أن تحسب الأخطاء على أساس فترة إلى فترة عندما يتم تركيب النموذج على البيانات. ومن وجهة النظر التقنية، فإن مشكلة استخدام الأخطاء المتأخرة كمنبئات هي أن التنبؤات النموذجية 8217s ليست دالات خطية للمعاملات. رغم أنها وظائف خطية للبيانات السابقة. لذلك، يجب تقدير المعاملات في نماذج أريما التي تتضمن أخطاء متخلفة بطرق التحسين غير الخطية (8220hill-التسلق 8221) بدلا من مجرد حل نظام المعادلات. اختصار أريما لتقف على السيارات والانحدار المتكامل المتحرك المتوسط. ويطلق على الفترات المتأخرة في السلسلة المعيارية في معادلة التنبؤ مصطلحات كوتورغريسغريسيفيكوت، ويطلق على "أخطاء أخطاء التنبؤ" مصطلحات متوسط ​​التكلفة، ويقال إن السلسلة الزمنية التي يجب أن تكون مختلفة لتكون ثابتة، هي عبارة عن نسخة متقاربة من سلسلة ثابتة. نماذج المشي العشوائي ونماذج الاتجاه العشوائي، ونماذج الانحدار الذاتي، ونماذج التجانس الأسي كلها حالات خاصة لنماذج أريما. ويصنف نموذج أريما نوناسونال على أنه نموذج كوتاريما (p، d، q) كوت حيث: p هو عدد مصطلحات الانحدار الذاتي، d هو عدد الاختلافات غير الموسمية اللازمة للاستبانة، و q هو عدد الأخطاء المتوقعة في التنبؤات معادلة التنبؤ. يتم بناء معادلة التنبؤ على النحو التالي. أولا، اسمحوا y تدل على الفرق د من Y. مما يعني: لاحظ أن الفرق الثاني من Y (حالة d2) ليس الفرق من 2 منذ فترات. بدلا من ذلك، هو الفرق الأول من الأول الفرق. وهو التناظرية منفصلة من مشتق الثاني، أي تسارع المحلي للسلسلة بدلا من الاتجاه المحلي. من حيث y. معادلة التنبؤ العامة هي: هنا يتم تعريف المعلمات المتوسطة المتحركة (9528217s) بحيث تكون علاماتها سلبية في المعادلة، وفقا للاتفاقية التي قدمها بوكس ​​وجينكينز. بعض الكتاب والبرمجيات (بما في ذلك لغة البرمجة R) تعريفها بحيث لديهم علامات زائد بدلا من ذلك. عندما يتم توصيل الأرقام الفعلية في المعادلة، لا يوجد أي غموض، ولكن من المهم أن نعرف 8217s الاتفاقية التي يستخدمها البرنامج الخاص بك عندما كنت تقرأ الإخراج. في كثير من الأحيان يتم الإشارة إلى المعلمات هناك من قبل أر (1)، أر (2)، 8230، و ما (1)، ما (2)، 8230 الخ لتحديد نموذج أريما المناسب ل Y. تبدأ من خلال تحديد ترتيب الاختلاف (د) الحاجة إلى توثيق السلسلة وإزالة الخصائص الإجمالية للموسمية، ربما بالاقتران مع تحول استقرار التباين مثل قطع الأشجار أو الانقسام. إذا كنت تتوقف عند هذه النقطة والتنبؤ بأن سلسلة ديفيرنتد ثابت، لديك مجرد تركيب المشي العشوائي أو نموذج الاتجاه العشوائي. ومع ذلك، قد لا تزال السلسلة المستقرة ذات أخطاء ذات علاقة ذاتية، مما يشير إلى أن هناك حاجة إلى بعض المصطلحات أر (p 8805 1) أندور بعض مصطلحات ما (q 8805 1) في معادلة التنبؤ. ستتم مناقشة عملية تحديد قيم p و d و q الأفضل لسلسلة زمنية معينة في الأقسام اللاحقة من الملاحظات (التي توجد روابطها في أعلى هذه الصفحة)، ولكن معاينة لبعض الأنواع من نماذج أريما نونسونالونال التي تواجه عادة ما يرد أدناه. أريما (1،0،0) من الدرجة الأولى نموذج الانحدار الذاتي: إذا كانت السلسلة ثابتة و أوتوكوريلاتد، وربما يمكن التنبؤ بها باعتبارها متعددة من قيمتها السابقة، بالإضافة إلى ثابت. معادلة التنبؤ في هذه الحالة هي 8230 الذي يتراجع Y على نفسه متأخرا بفترة واحدة. هذا هو 8220ARIMA (1،0،0) ثابت 8221 نموذج. إذا كان متوسط ​​Y هو الصفر، فإن المصطلح الثابت لن يتم تضمينه. إذا كان معامل الانحدار 981 1 موجبا وأقل من 1 في الحجم (يجب أن يكون أقل من 1 من حيث الحجم إذا كان Y ثابتا)، يصف النموذج سلوك التراجع المتوسط ​​الذي ينبغي التنبؤ فيه بقيمة 8217s للفترة التالية لتكون 981 1 مرة بعيدا عن متوسط ​​هذه الفترة قيمة 8217s. وإذا كان 981 1 سلبيا، فإنه يتنبأ بسلوك التراجع عن طريق تبديل الإشارات، أي أنه يتوقع أيضا أن يكون Y أقل من متوسط ​​الفترة التالية إذا كان أعلى من متوسط ​​هذه الفترة. في نموذج الانحدار الذاتي من الدرجة الثانية (أريما (2،0،0))، سيكون هناك مصطلح T-2 على اليمين كذلك، وهكذا. واعتمادا على علامات ومقدار المعاملات، يمكن أن يصف نموذج أريما (2،0،0) نظاما له انعكاس متوسط ​​يحدث بطريقة تتأرجح جيبيا، مثل حركة الكتلة في فصل الربيع الذي يتعرض للصدمات العشوائية . أريما (0،1،0) المشي العشوائي: إذا كانت السلسلة Y ليست ثابتة، أبسط نموذج ممكن لذلك هو نموذج المشي العشوائي، والتي يمكن اعتبارها حالة الحد من نموذج أر (1) التي الانتكاس الذاتي معامل يساوي 1، أي سلسلة مع بلا حدود بطيئة متوسط ​​الانعكاس. ويمكن كتابة معادلة التنبؤ لهذا النموذج على النحو التالي: حيث يكون المصطلح الثابت هو متوسط ​​التغير من فترة إلى أخرى (أي الانجراف الطويل الأجل) في Y. ويمكن تركيب هذا النموذج كنموذج انحدار لا اعتراض يقوم فيه الفرق الأول من Y هو المتغير التابع. وبما أنه يشمل (فقط) اختلافا غير منطقي ومدة ثابتة، فإنه يصنف على أنه نموذج كوتاريما (0،1،0) مع ثابت. كوت نموذج المشي العشوائي بدون الانجراف سيكون أريما (0،1، 0) نموذج بدون نموذج أريسترجيسد من الدرجة الأولى (1-1،0): إذا كانت أخطاء نموذج المشي العشوائي مترابطة تلقائيا، ربما يمكن إصلاح المشكلة بإضافة فاصل واحد للمتغير التابع إلى معادلة التنبؤ - أي وذلك بتراجع الفارق الأول من Y على نفسه متأخرا بفترة واحدة. وهذا من شأنه أن يسفر عن معادلة التنبؤ التالية: التي يمكن إعادة ترتيبها إلى هذا هو نموذج الانحدار الذاتي من الدرجة الأولى مع ترتيب واحد من اختلاف غير منطقي ومدة ثابتة - أي. وهو نموذج أريما (1،1،0). أريما (0،1،1) دون تمهيد الأسي المستمر المستمر: اقترح استراتيجية أخرى لتصحيح الأخطاء أوتوكوريلاتد في نموذج المشي العشوائي من قبل نموذج تمهيد الأسي بسيط. تذكر أنه بالنسبة لبعض السلاسل الزمنية غير المستقرة (مثل تلك التي تظهر تقلبات صاخبة حول متوسط ​​متباينة ببطء)، فإن نموذج المشي العشوائي لا يؤدي فضلا عن المتوسط ​​المتحرك للقيم السابقة. وبعبارة أخرى، فبدلا من أخذ الملاحظة الأخيرة كتوقعات الملاحظة التالية، من الأفضل استخدام متوسط ​​الملاحظات القليلة الأخيرة من أجل تصفية الضوضاء وتقدير المتوسط ​​المحلي بدقة أكبر. يستخدم نموذج التمهيد الأسي البسيط المتوسط ​​المتحرك المرجح أضعافا مضاعفة للقيم السابقة لتحقيق هذا التأثير. يمكن كتابة معادلة التنبؤ لنموذج التمهيد الأسي البسيط في عدد من الأشكال المكافئة رياضيا. واحد منها هو ما يسمى 8220 خطأ التصحيح 8221 النموذج، الذي يتم تعديل التوقعات السابقة في اتجاه الخطأ الذي قدمه: لأن ه ر - 1 ذ ر - 1 - 374 ر - 1 حسب التعريف، يمكن إعادة كتابة هذا كما في : وهو أريما (0،1،1) مع معادلة التنبؤ المستمر مع 952 1 1 - 945. وهذا يعني أنه يمكنك تناسب تمهيد الأسي بسيط من خلال تحديده كنموذج أريما (0،1،1) دون ثابت، ويقدر معامل ما (1) المقدر 1-ناقص ألفا في صيغة سيس. نذكر أن متوسط ​​عمر البيانات في التنبؤات قبل فترة واحدة هو 945 1 في نموذج سيس، وهذا يعني أنها سوف تميل إلى التخلف عن الاتجاهات أو نقاط التحول بنحو 1 945 فترات. ويترتب على ذلك أن متوسط ​​عمر البيانات في التنبؤات السابقة بفترة زمنية واحدة لنموذج أريما (0،1،1) بدون نموذج ثابت هو 1 (1 - 952 1). إذا، على سبيل المثال، إذا كان 952 1 0.8، متوسط ​​العمر هو 5. كما 952 1 النهج 1، يصبح النموذج أريما (0،1،1) بدون ثابت متوسط ​​متحرك طويل الأجل جدا، و 952 1 النهج 0 يصبح نموذج المشي العشوائي دون الانجراف. ما هو أفضل طريقة لتصحيح الارتباط الذاتي: إضافة المصطلحات أر أو إضافة مصطلحات ما في النموذجين السابقين نوقش أعلاه، تم إصلاح مشكلة أخطاء أوتوكوريلاتد في نموذج المشي العشوائي بطريقتين مختلفتين: عن طريق إضافة قيمة متخلفة من سلسلة مختلفة إلى المعادلة أو إضافة قيمة متأخرة لخطأ التنبؤ. النهج الذي هو أفضل قاعدة من الإبهام لهذا الوضع، والتي سيتم مناقشتها بمزيد من التفصيل في وقت لاحق، هو أن الارتباط الذاتي الإيجابي عادة ما يعامل بشكل أفضل عن طريق إضافة مصطلح أر إلى النموذج وعادة ما يعامل الارتباط الذاتي السلبي عن طريق إضافة ما المدى. في سلسلة الأعمال والاقتصاد الزمني، وغالبا ما تنشأ الارتباط الذاتي السلبي باعتباره قطعة أثرية من الاختلاف. (بشكل عام، يقلل الاختلاف من الارتباط الذاتي الإيجابي وربما يتسبب في التحول من الارتباط الذاتي الموجب إلى السالب). لذلك، فإن نموذج أريما (0،1،1)، الذي يكون فيه الاختلاف مصحوبا بمصطلح ما، غالبا ما يستخدم من أريما (1،1،0) نموذج. أريما (0،1،1) مع تمهيد الأسي المستمر المستمر مع النمو: من خلال تنفيذ نموذج سيس كنموذج أريما، كنت في الواقع كسب بعض المرونة. أولا وقبل كل شيء، ويسمح معامل ما (1) المقدرة لتكون سلبية. وهذا يقابل عامل تمهيد أكبر من 1 في نموذج سيس، وهو ما لا يسمح به عادة إجراء تركيب نموذج سيس. ثانيا، لديك خيار إدراج مدة ثابتة في نموذج أريما إذا كنت ترغب في ذلك، من أجل تقدير متوسط ​​الاتجاه غير الصفر. ويشتمل نموذج أريما (0،1،1) الثابت على معادلة التنبؤ: إن التنبؤات ذات الفترة الواحدة من هذا النموذج متشابهة نوعيا مع نموذج نموذج سيس، إلا أن مسار التنبؤات الطويلة الأجل عادة ما يكون (المنحدر يساوي مو) بدلا من خط أفقي. أريما (0،2،1) أو (0،2،2) دون تمهيد أسي خطية ثابتة: نماذج التجانس الأسية الخطية هي نماذج أريما التي تستخدم اثنين من الاختلافات نونسوناسونال بالتزامن مع الشروط ما. والفرق الثاني لسلسلة Y ليس مجرد الفرق بين Y وتخلف نفسها بفترتين، وإنما هو الفرق الأول من الاختلاف الأول - أي. التغيير في تغيير Y في الفترة t. وبالتالي، فإن الفارق الثاني من Y في الفترة t يساوي (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. والفرق الثاني من الدالة المنفصلة يشبه مشتق ثان من دالة مستمرة: يقيس الدالة كوتاكسيليركوت أو كوتكورفاتوريكوت في الدالة عند نقطة معينة من الزمن. ويتنبأ نموذج أريما (0،2،2) دون توقع ثابت بأن الفارق الثاني من السلسلة يساوي دالة خطية لآخر خطأين متوقعين: يمكن إعادة ترتيبهما على النحو التالي: حيث يكون 952 1 و 952 2 هما (1) و ما (2) معاملات. هذا هو نموذج التجانس الأسي العام الخطية. أساسا نفس نموذج Holt8217s، و Brown8217s نموذج هو حالة خاصة. ويستخدم المتوسطات المتحركة المرجح أضعافا مضاعفة لتقدير كل من المستوى المحلي والاتجاه المحلي في هذه السلسلة. تتلاقى التوقعات على المدى الطويل من هذا النموذج مع خط مستقيم يعتمد ميله على متوسط ​​الاتجاه الملحوظ نحو نهاية السلسلة. أريما (1،1،2) دون ثابت خطي الاتجاه الاتجاه الأسي تمهيد. ويوضح هذا النموذج في الشرائح المصاحبة على نماذج أريما. فإنه يستقلب الاتجاه المحلي في نهاية السلسلة ولكن تسطح بها في آفاق التنبؤ أطول لإدخال مذكرة من المحافظة، وهي الممارسة التي لديها الدعم التجريبي. انظر المقال على كوهي في ذي تريند تريند وركسكوت غاردنر أند ماكنزي أند ذي كوغولدن رولكوت أرتيسترونغ إت آل. للتفاصيل. فمن المستحسن عموما التمسك النماذج التي لا يقل عن واحد من p و q لا يزيد عن 1، أي لا تحاول أن تناسب نموذج مثل أريما (2،1،2)، وهذا من المرجح أن يؤدي إلى الإفراط في تجهيز وكومكومون-فاكتوركوت القضايا التي نوقشت بمزيد من التفصيل في الملاحظات على الهيكل الرياضي لنماذج أريما. تنفيذ جدول البيانات: من السهل تنفيذ نماذج أريما مثل تلك الموضحة أعلاه على جدول بيانات. ومعادلة التنبؤ هي مجرد معادلة خطية تشير إلى القيم السابقة للسلاسل الزمنية الأصلية والقيم السابقة للأخطاء. وهكذا، يمكنك إعداد جدول بيانات تنبؤ أريما عن طريق تخزين البيانات في العمود ألف، وصيغة التنبؤ في العمود باء، والأخطاء (البيانات ناقص التنبؤات) في العمود C. وستكون صيغة التنبؤ في خلية نموذجية في العمود باء ببساطة تعبير خطي يشير إلى القيم في الصفوف السابقة من العمودين A و C مضروبا في معاملات أر أو ما المناسبة المخزنة في خلايا أخرى في جدول البيانات ..8.4 نماذج المتوسط ​​المتحرك بدلا من استخدام القيم السابقة للمتغير المتوقع في الانحدار، يستخدم النموذج المتوسط ​​أخطاء التنبؤ السابقة في نموذج تشبه الانحدار. y c ثيت e ثيتا e دوتس ثيتا e، وير إت إس وايت نويز. ونشير إلى هذا على أنه نموذج ما (q). بالطبع، نحن لا نلاحظ قيم إت، لذلك فإنه ليس حقا الانحدار بالمعنى المعتاد. لاحظ أن كل قيمة يت يمكن اعتبارها كمتوسط ​​متحرك مرجح لأخطاء التنبؤ القليلة الماضية. ومع ذلك، ينبغي عدم الخلط بين متوسطات النماذج المتحركة مع تمهيد المتوسط ​​المتحرك الذي ناقشنااه في الفصل 6. ويستخدم نموذج المتوسط ​​المتحرك للتنبؤ بالقيم المستقبلية في حين يستخدم متوسط ​​التحريك المتوسط ​​لتقدير دورة اتجاه القيم السابقة. الشكل 8-6: مثالان للبيانات المستمدة من النماذج المتوسطة المتحركة بمعلمات مختلفة. يسار: ما (1) مع y t 20e t 0.8e t-1. رايت: ما (2) مع y t t - e t-1 0.8e t-2. وفي كلتا الحالتين، يوزع e t عادة الضوضاء البيضاء مع متوسط ​​الصفر والتباين الأول. ويبين الشكل 8.6 بعض البيانات من نموذج ما (1) ونموذج ما (2). تغيير المعلمات theta1، النقاط، نتائج ثيتاق في أنماط سلسلة زمنية مختلفة. كما هو الحال مع نماذج الانحدار الذاتي، والتباين من مصطلح الخطأ وسوف تغير فقط حجم السلسلة، وليس الأنماط. ومن الممكن كتابة أي نموذج أر (p) ثابتة كنموذج ما (إنفتي). على سبيل المثال، باستخدام الاستبدال المتكرر، يمكننا أن نبرهن على ذلك لنموذج أر (1): يبدأ يت أمب phi1y و أمب phi1 (phi1y e) و أمب phi12y phi1 e و أمب phi13y phi12e phi1 e و أمبتكست إند المقدم -1 لوت phi1 لوت 1، فإن قيمة phi1k الحصول على أصغر كما يحصل ك أكبر. حتى في نهاية المطاف نحصل على إيت و phi1 ه phi12 ه phi13 e كدوتس، وهو ما (إنفتي) العملية. النتيجة العكسية تحمل إذا فرضنا بعض القيود على المعلمات ما. ثم يسمى نموذج ما عكسية. وهذا هو، أننا يمكن أن يكتب أي ماه (q) عملية لا يمكن عكسها باعتبارها أر (إنفتي) العملية. نماذج لا تقلب ليست ببساطة لتمكيننا من تحويل نماذج ما إلى نماذج أر. لديهم أيضا بعض الخصائص الرياضية التي تجعلها أسهل للاستخدام في الممارسة العملية. إن قيود العوائق مماثلة لقيود المحطات. للحصول على نموذج ما (1): -1lttheta1lt1. للحصول على نموذج ما (2): -1lttheta2lt1، theta2theta1 غ-1، theta1 - theta2 لوت 1. ظروف أكثر تعقيدا عقد ل qge3. مرة أخرى، سوف R رعاية هذه القيود عند تقدير النماذج.

No comments:

Post a Comment